Мильнер, Хокинг и Цукерберг
Выражение — «Слетать на Луну», у большинства из нас вызывает ассоциации на грани фантастики, сравнимые разве что с проектами наподобие Аполлон-11 (Apollo 11) по доставке человека на поверхность Луны. Проект Breakthrough Starshot Initiative (Прорыв к Звездам) уносит нас гораздо дальше пределов Луны, так как его целью является путешествие к ближайшим солнечным системам.
Межзвездные путешествия:
Детище Юрия Мильнера: миллиардера, техно-новатора, урожденца России, проект Breakthrough Starshot был анонсирован на пресс-конференции в апреле 2016 года с участием таких известных учёных как Стивен Хокинг (Stephen Hawking) и Фримен Дайсон (Freeman Dyson). Суть технологии заключается в следующем, — тысячи пластино-образных чипов, прикрепленных к большому световому парусу из серебра, разместят на орбите Земли. Затем этот парус будет, в буквальном смысле, вытолкнут в глубокий космос пучком лазерных лучей направленных с земли.
Уже через две минуты направленного действия лазеров, космический парус достигнет 1/5 скорости света, – это в 1000 раз быстрее скоростей когда-либо развитых макроскопическими объектами.
В течении двадцатилетнего полёта корабль будет собирать данные о межзвездном пространстве. По достижении созвездия Альфа Центавра бортовая камера сделает ряд высокоточных снимков и отправит их на Землю. Это даст нам возможность заглянуть к ближайшим планетарным соседям и понять насколько они могут быть пригодны для колонизации.
Команда проекта Breakthrough Starshot впечатляет не меньше самой идеи. В число совета директоров вошли Мильнер, Хокинг и Марк Цукерберг. Исполнительным директором назначен бывший руководитель Исследователького Центра Амес НАСА (NASA Ames Research Center) — Пит Ворден (S. Pete Worden). Среди остальных участников имеются Нобелевские лауреаты и другие советники проекта Breakthrough. Мильнер обещает вложить свои собственные 100 миллионов долларов для старта проекта и в течении ближайших лет собрать ещё 10 миллиардов с помощью своих коллег.
На первый взгляд это может показаться научной фантастикой, хотя по-факту нет никаких научных препятствий для реализации данного проекта. Это не значит что всё случится завтра. Для успешного Прорыва к Звёздам необходимо совершить ряд научных открытий. Участники и консультанты проекта рассчитывают на экспоненциальный рост технологий который позволит воплотить Breakthrough Starshot в течении следующих 20-ти лет.
Далее мы рассмотрим 11 ключевых технологий и предположим их вероятное развитие в ближайшие два десятилетия.
К экзопланетам относят все планеты за пределами нашей солнечной системы. В то время как первые открытия датируются 1988 годом, по состоянию на 1 мая 2017 года было обнаружено 3,608 экзопланет в 2,702 солнечных системах. Некоторые из планет очень подобны нашим, другие имеют ряд уникальностей вроде колец в 200 раз шире чем у нашего Сатурна.
Причиной такого взрыва находок является мощный рывок в усовершенствовании телескопических технологий.
Всего лишь 100 лет назад самым большим телескопом в мире был Телескоп Хукера (Hooker Telescope) с линзой диаметром 2,5 метра. Сегодня, Европейская Южная Обсерватория (European Southern Observatory) имеет комплекс из четырех телескопов, диаметр каждого 8,2 метра. Она считается самой масштабной наземной структурой по изучению астрономии, в среднем публикующей по одному отрецензированному научному документу в день.
Ученые так же используют ОБТ (Очень Большой Телескоп) и специальный инструментарий для поиска скалистых планет в «жилых» (допускающих жидкую воду) зонах других солнечных систем. В мае 2016 года при помощи ТРАПИСТа (TRAPPIST – Малый Телескоп для Наблюдения за Транзитными Планетами и Планетезималями) исследователи в Чили обнаружили семь экзопланет размером с Землю, находящихся в пригодной для обитания зоне.
Тем временем, космический аппарат Кеплер (NASA Kepler), созданный специально для этих целей, уже идентифицировал более 2000 экзопланет. Космический телескоп имени Джеймса Вебба (JWST – James Webb Space Telescope) который планируют запустить в октябре 2018 года, откроет доселе невиданные возможности для проверки экзопланет на наличие жизни. «Если у этих планет есть атмосфера, телескоп Вебба станет ключом к раскрытию их секретов», – говорит Дуг Хадгинс (Doug Hudgins), ученый программы НАСА по изучению экзопланет в штаб-квартире в Вашингтоне.
Материнский корабль Starshot будет поднят с земли ракетой носителем и затем выпустит тысячу маленьких пластинок в космос. Стоимость выведения полезного груза одноразовыми ракетами слишком велика, но такие компании как SpaceX и Blue Origin подают реальные надежды на использование многоразовых ракет которые позволят значительно сократить стоимость запуска. SpaceX уже смогла снизить затраты при запуске Falcon 9 на 60 миллионов долларов. С увеличением доли частных космических компаний на мировом рынке запуск многоразовых ракет станет более доступным и дешёвым.
Каждая 15-ти миллиметровая пластинка должна будет вместить множество сложных электронных приборов, таких как навигатор, камеру, лазер для связи, радиоизотопную батарею, мультиплексовую камеру и камеру для интерфейса. Возможность комплектации целого космического корабля на крохотную пластину, объясняется экспоненциальным уменьшением размеров датчиков и чипов.
В 1960-х годах первые компьютерные чипы состояли из целой горсти транзисторов. Сегодня, благодаря закону Мура, мы можем вмещать миллиарды транзисторов на один чип. Первая цифровая камера весила 8 фунтов и снимала 0,01 мегапикселя. Теперь цифровые камеры, делают высококачественные 12-мегапиксельные цветные изображения, помещаются в смартфон с кучей других датчиков, таких как GPS, акселерометр и гироскоп. С появлением более мелких спутников, обеспечивающих лучшие данные мы наблюдаем как все эти усовершенствования применяются в освоении космоса.
Для успеха Starshot нам понадобится чтобы масса чипа составляла около 0,22 грамма к 2030 году. Если темпы совершенствования продолжатся, прогнозы предполагают, что это вполне возможно.
Парус должен быть изготовлен из материала, с высокой отражательной способностью (чтобы получить максимальное ускорение от лазера), минимально поглощающий (чтобы он не горел от тепла), а также очень легкий по весу (позволяющий быстрое ускорение). Это чрезвычайно сложное сочетание и в настоящее время подходящего материала ещё не найдено.
Применение автоматизации искусственного интеллекта позволит ускорить открытие подобных материалов. Суть автоматизации заключается в том что машина сможет генерировать библиотеку из десяток тысяч материалов для тестирования. Это существенно облегчит инженерам задачу отбора лучших вариантов для исследований и разработок.
Хоть Starchip и будет использовать крошечную ядерную радиоизотопную батарею для 24-летнего путешествия, нам все равно понадобятся обычные химические батареи для лазеров. Лазеры будут расходовать огромную энергию за короткий промежуток времени, а это значит, что мощность должна храниться максимально близко.
Емкость батарей растёт в среднем на 5-8% в год; мы часто этого не замечаем, потому что потребление энергии гаджетами растёт пропорционально, оставляя в целом срок службы прежним. Если динамика улучшения батарей сохраниться, через 20 лет они должны иметь прирост в 3-5 раз от их нынешней емкости. Эти ожидания полагаются на инновации Tesla-Solar City (Город Тесла-Солар) от инвестиций в аккумуляторные технологии. Компании в Кауаи уже установили около 55 000 батарей для питания значительной части своей инфраструктуры.
Тысячи мощнейших лазеров будут использоваться для разгона паруса до световых скоростей.
Лазерные технологии подчинялись закону Мура с такой же скоростью как и интегральные схемы, снижая соотношение затрат к мощностям в два раза каждые 18 месяцев. В особенности, в последнее десятилетие произошел резкий скачок масштабирования мощности диодных и волоконных лазеров, первые смогли выжать 10 киловатт из одномодового волокна в 2010 году и 100-киловатт месяцами позже. Наряду с обычной мощностью, нам также нужно совершенствовать технологии объединения фазированных матричных лазеров.
Наша способность двигаться быстро, двигалась быстро… В 1804 году был изобретен первый паровоз, развив невиданную на то время скорость в 110 км/ч. Космический корабль «Гелиос 2» побил этот рекорд в 1976 году, удаляясь от Земли со скоростью 356 040 км/ч. Спустя 40 лет, космический аппарат Новые Горизонты (New Horizons) достиг гелиоцентрической скорости почти 45 км/с или 160 000 км/ч. Но даже с этими скоростями, понадобится очень много времени чтобы добраться до Альфы Центавра, находящейся на расстоянии более чем четырех световых лет.
В то время как разгон субатомных частиц до скорости света является привычным делом для ускорителей частиц, никогда ранее это не достигалось макроскопическими объектами. Достижение всего 20% скорости света для Starshot, означало бы 1000-кратный прирост скорости для объекта когда-либо построенного человеком.
Основой для вычислительной техники является способность хранить информацию. Starshot полагается на продолжение снижения стоимости и размеров цифровой памяти, чтобы обеспечить достаточный объём для хранения своих программ и изображений, отснятых в системе Альфы Центавра и ее планет.
Стоимость памяти снижалась экспоненциально в течение десятилетий: в 1970 году мегабайт стоил около миллиона долларов; Сейчас около 0.1 цента. Размер хранилищ также уменьшился: от 5-мегабайтного жесткого диска, загружаемого вилочным погрузчиком в 1956 году, до ныне доступных 512-гигабайтных USB-накопителей весом в несколько граммов.
Как только будут получены первые изображения, Starchip отправит их на Землю для обработки.
С тех пор как Александр Белл (Alexander Graham Bell) изобрел телефон в 1876 году телекоммуникации шагнули далеко вперед. Средняя скорость интернета в США на сегодняшний день составляет около 11 мегабит в секунду. Ширина канала и скорость, необходимые Starshot для отправки цифровых изображений на расстоянии четырёх световых лет (или 20 триллионов миль), потребуют использования новейших разработок в сфере коммуникаций.
Одной из перспективных технологий является Li-Fi, беспроводная связь в 100 раз быстрее Wi-Fi. Второй — оптические волокна, которые теперь позволяют пропускать 1.125 терабит в секунду. Помимо этих есть наработки в области квантовых коммуникаций, которые не только сверхбыстры, но и абсолютно безопасны.
Последним шагом в проекте Starshot является анализ данных, полученных с космического корабля. Ставка делается на экспоненциальное увеличение вычислительных мощностей с приростом в триллион раз в последующие 60 лет.
Стремительное удешевление этого момента в значительной степени связывают с развитием облачных вычислений. Заглядывая в будущее, квантовые методы обработки информации обещают тысячекратный прирост мощностей к моменту получения первых данных от Starshot. Такие продвинутые процессоры дадут возможность выполнять сложные научные моделирования и анализ ближайших звездных систем.
Благодарности: автор хотел бы поблагодарить Пита Уордена и Грегга Мэриньяка за правки и комментарии.
Оригинал статьи SingularityHub, перевод Cosmos.Agency